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a b s t r a c t

Identifying an appropriate method for modelling automotive dissipative silencers

normally requires one to choose between analytic and numerical methods. It is common

in the literature to justify the choice of an analytic method based on the assumption that

equivalent numerical techniques are more computationally expensive. The validity of

methods are compared to two numerical methods for a uniform dissipative silencer that

contains a bulk reacting porous material separated from a mean gas flow by a perforated

pipe. The numerical methods are developed here with a view to speeding up

transmission loss computation, and are based on a mode matching scheme and a

hybrid finite element method. The results presented demonstrate excellent agreement

between the analytic and numerical models provided a sufficient number of

propagating acoustic modes are retained. However, the numerical mode matching

method is shown to be the fastest method, significantly outperforming an equivalent

analytic technique. Moreover, the hybrid finite element method is demonstrated to be as

fast as the analytic technique. Accordingly, both numerical techniques deliver fast and

accurate predictions and are capable of outperforming equivalent analytic methods for

automotive dissipative silencers.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous models are now available for computing sound attenuation by dissipative silencers typically found on
internal combustion engines. The models developed range from simple plane wave analytic models to fully three-
dimensional numerical models. The computational effort required by each method can vary significantly and one is usually
left with a decision of how best to balance computational speed with solution accuracy. This article aims to develop a
better understanding of how different approaches compare in terms of speed and accuracy by analysing four different
methodologies: (i) an analytic model based on the fundamental mode only; (ii) an analytic mode matching method; (iii) a
numerical mode matching method; and (iv) a hybrid numerical method. Here, the two numerical methods presented are
modifications of existing techniques with a view to improving computational efficiency without sacrificing accuracy. The
accuracy and efficiency of each method is then compared for a straight through dissipative silencer containing a perforated
pipe separating a mean fluid flow from a bulk reacting porous material.

The most straightforward and computationally efficient approach to modelling automotive dissipative silencers is to
assume that only the fundamental mode propagates within each silencer section. This allows for a simple closed form
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analytic solution to be written, see Peat [1] and, later, Kirby [2]. This method is attractive since one does not need to find
roots of a governing eigenequation and so the method is very quick. There is, however, a penalty to pay for this speed and
Kirby [2] demonstrates that at higher frequencies and for larger silencers the method lacks accuracy. Nevertheless, the
methodology is useful for low frequency design work and, since it includes both mean flow and a perforated pipe, Kirby’s
method [2] will be reviewed later on.

To improve prediction accuracy it is necessary to include higher order modes, at least within the silencer section. This
complicates matters since one must now solve the governing eigenequation for the silencer section, which is far from
straightforward when mean flow is present. This normally requires an iterative method such as, for example, the
Newton–Raphson method [3–5] or the Secant method [6,7]. The different iterative methods have their relative advantages
and disadvantages, but the very fact that iterative solutions are required impacts on computational efficiency. On solving
the governing eigenequation it is necessary to match axial continuity conditions over the inlet and outlet planes of the
silencer. When no mean flow is present analytic methods have been used to enforce continuity of pressure and axial
velocity with little difficulty [3,4,6–8], even for multiple area discontinuities [9] and for large silencers [10]. However, when
mean flow is present Kirby and Denia [5] suggested that it is necessary to change the axial continuity conditions so that
they equate to the transverse continuity conditions used to match between the mean flow region and the absorbing
material. Analytic mode matching then delivers a transfer matrix for the silencer in which normally between four and eight
silencer modes need to be included [3,5] in order to obtain sufficient accuracy and so inverting the transfer matrix is
normally very quick. It is tempting then to view analytic mode matching as very computationally efficient and much faster
than numerical methods; however, the speed of analytic mode matching schemes depends almost entirely on the time
taken to find the roots of the governing eigenequation, and it is not necessarily the case that this is faster than equivalent
numerical methods. This issue was noted by Albelda et al. [8], who avoided solving the usual dispersion relation by sub-
dividing the silencer cross-section in order to find two sets of modes after first enforcing zero pressure and zero radial
velocity over the perforated pipe. The authors note that these two sets of modes may be computed analytically for circular
and elliptical geometries, although they do not provide details of the dispersion relations that follow. The Galerkin method
is then used to find the eigenvectors and axial wavenumbers for the silencer itself, and for circular and elliptical geometries
the integrals that follow may be calculated analytically. The usual mode matching procedure is then employed to find the
silencer transmission loss. Accordingly, this method neatly sidesteps the root finding problems associated with the more
usual silencer eigenequation and so is potentially faster than the traditional analytical methods. Furthermore, an extension
of this method to include mean flow and a perforated pipe has recently been reported [11], although the full details have
yet to be published.

Numerical methods generally separate into two different approaches: those which take advantage of the
uniform geometry often present in automotive silencers, and those which seek to model the whole silencer chamber.
The first approach clearly has the potential to speed up solutions although, in common with analytic mode matching, this
method can be cumbersome if many different discontinuities are present such as inlet and outlet extensions. Conversely,
the second approach is traditionally thought to be very time consuming and this method appears to be more suited to very
complex non-uniform silencer designs. Accordingly, for a uniform dissipative silencer a numerical mode matching method
appears to be the most attractive, and this has the added advantage of avoiding an iterative technique to solve the
governing eigenequation. For example, Astley et al. [12] use the finite element method to solve the governing eigenequation
and then use collocation to match across a discontinuity in a lined rectangular duct. Later, Glav [13,14] used a point
matching technique to study uniform silencers with irregular cross-sections, although the rate of convergence of this
method is sensitive to silencer geometry and the collocation grid chosen. Kirby [15] extended the work of Astley et al. [12]
and applied collocation to silencers of elliptical cross-section containing both mean flow and a perforated pipe. This
represents a general method for silencers of arbitrary cross-section; however, because the method is numerically based it
has generally been viewed as computationally inefficient for circular silencers and inherently slower than equivalent
analytic techniques.

General numerical schemes suitable for complex silencer geometries have also been applied in the study of automotive
silencers, see for example Bilawchuk and Fyfe [16] who review the application of the finite element method (FEM) and the
boundary element method (BEM). When no mean flow is present, the BEM has been applied successfully to complicated
silencers geometries [16–18]. Similarly, the FEM has also been used to study dissipative silencers without flow [16,19], and
Mehdizadeh and Paraschivoiu [20] report a comprehensive three-dimensional approach. Clearly, using a fully three-
dimensional model is very computationally expensive and the number of degrees of freedom used by Mehdizadeh and
Paraschivoiu [20] appears to be excessive, at least for a uniform circular silencer. It is noticeable, however, that the
boundary element models do not combine the effects of both mean flow and a perforated pipe, and only Peat and Rathi [21]
have successfully added mean flow to a finite element model of a bulk reacting dissipative silencer. Here, Peat and
Rathi focus on computing the silencer four poles, which requires solving the problem twice. Thus, if one desires only the
silencer transmission loss then this method is more computationally expensive than, say, the three point method [20],
although computation of the silencer four poles does allow predictions to be easily incorporated into models of an overall
silencer system. Peat and Rathi [21] also omitted a perforated pipe, but superimposed a mean bias flow inside the
absorbing material in order to examine the effect this has on silencer performance. It is likely, however, that a perforated
pipe will lower the mean flow inside the porous material and so it appears justified to neglect this effect, especially as
perforated pipes are always present in commercial silencers. Peat and Rathi [21] demonstrated generally good agreement
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with the analytic mode matching method of Cummings and Chang [3], at least at higher frequencies, although it appears
here to be reasonable to assume that the FEM should be slower than the analytic mode matching method for comparable
accuracy.

The relative computational efficiency and accuracy of predictions for two analytic and two numerical methods are
reviewed here. This is carried out for a circular dissipative silencer containing mean flow and a perforated pipe. Here,
particular attention will be paid to improving existing numerical techniques so that they are more computationally
efficient for a given degree of accuracy. The analytic techniques to be used as benchmark predictions are the low frequency
algorithm of Kirby [2], which will be abbreviated here as the APW method, and the analytic mode matching method of
Kirby and Denia [5], abbreviated as the AMM method. The analytic method of Kirby and Denia has been chosen here as it
represents the more usual mode matching approach (see also Refs. [3,4,6,7]), and in the absence of further details on the
method of Albelda et al. [11]. The analytic methods are compared against new versions of the point collocation method of
Kirby [15] and the FEM of Peat and Rathi [21]. Here, the point collocation method (abbreviated as the NMM method) is
modified by including the new axial matching conditions reported by Kirby and Denia [5] and enforcing these conditions
using mode matching rather than collocation. The FEM of Peat and Rathi [21] is modified to include a perforated pipe, but
the method will also be improved by utilising the hybrid numerical method recently reported by Kirby [22]. This hybrid
numerical method is not new (see for example Ref. [23]), but it has yet to be applied to the study of dissipative silencers,
with or without mean flow. The hybrid method uses a modal representation for the sound field in the inlet and outlet pipes
and, using mode matching, ‘‘joins’’ this to a finite element representation of the sound field in the silencer chamber. This
avoids the need to mesh the inlet and outlet pipes, but also avoids the rather cumbersome three point method for finding
silencer transmission loss and so makes it very straightforward to find the silencer four poles. Accordingly, the hybrid
method (abbreviated here as the HFE method) has the potential to speed up the FEM for dissipative silencers and the
efficiency of this method will be benchmarked against the other analytic and numerical methodologies. The article begins
by reviewing the essential elements of the analytic models. A detailed description of the two numerical models is then
reported and results are presented in the form of transmission loss predictions; the analysis that follows will focus on the
relative efficiency of each method rather than a direct comparison with experimental data (which has been reported
elsewhere).

2. Theory

The automotive dissipative silencer is assumed to consist of a region of (isotropic) bulk reacting porous material of
arbitrary cross-section, separated by a concentric perforated pipe from a central airway that contains a uniform mean gas
flow of Mach number M, see Fig. 1. The inlet and outlet pipe walls, and the walls of the silencer chamber, are assumed to be
rigid and impervious to sound. Before reviewing different numerical and analytic methods for analysing this problem the
general governing equations, boundary conditions, and expressions for the inlet and outlet pipes are reported. Accordingly,
the acoustic wave equation for region q (q ¼ 1,2,3 or 4) is given by

1

c2
q

D2p0q

Dt2
�r2p0q ¼ 0, (1)

where cq is the speed of sound, p0q is the acoustic pressure, and t is time. The hard wall boundary condition is given by

rp0q � nq ¼ 0, (2)

over the outer surface Gw, where nq is the outward unit normal vector in region q. A modal representation for the sound
field in regions R1 and R4 is used in each of the methods that follow and so the sound pressure is written as an expansion
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Fig. 1. Geometry of silencer.
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over the pipe eigenmodes, to give

p01ðx; y; zÞ ¼
X1
n¼0

FnFn
i ðy; zÞe

�ik0l
n
i x þ

X1
n¼0

AnFn
r ðy; zÞe

�ik0l
n
r x, (3)

and

p04ðx
0; y; zÞ ¼

X1
n¼0

DnFn
i ðy; zÞe

�ik0l
n
i x0 þ

X1
n¼0

EnFn
r ðy; zÞe

�ik0l
n
r x0 . (4)

Here, Fn, An, Dn and En are the modal amplitudes; ln
i are the incident and ln

r the reflected axial wavenumbers, and Fn
i are

the incident and Fn
r the reflected eigenfunctions in regions 1 and 4, respectively. A time dependence of eiot is assumed

(where i ¼
ffiffiffiffiffiffiffi
�1
p

and o is the radian frequency) and k0 ¼ o=c0, where c0 is the isentropic speed of sound in air. For a
circular pipe with acoustically hard walls, the wavenumbers and eigenfunctions may easily be found (see Ref. [5]).

For the silencer chamber, region Rc ( ¼ R2+R3), different methods will be used to find the sound pressure distribution;
however, regions R2 and R3 will be ‘‘joined’’ using the same radial boundary conditions over the perforated pipe. Following
Kirby and Denia [5] this yields

u2 � n2 ¼ � 1� i
M

k0

q
qx

� �Q�1

u3 � n3, (5)

and

p02 � p03 ¼ r0c0zu3 � n3. (6)

Here, the fluid density in region R2 is r0, the acoustic velocity vector in region q is denoted by uq, and the (dimensionless)
impedance of the perforated pipe is denoted by z. In view of the discussions by Kirby and Denia [5] on the measurement of
the impedance of the perforated pipe, the constant Q (where 1pQp2) is introduced here so that Q ¼ 1 corresponds to
continuity of velocity, and Q ¼ 2 to continuity of displacement.

2.1. Analytic methods

Two different analytic methodologies are reviewed here, the plane wave (APM) method of Kirby [2] and the mode
matching (AMM) method of Kirby and Denia [5]. Both restrict their analysis to circular dissipative silencers. Of course,
these methods may in principle be extended to other regular geometries provided suitable transverse analytic functions are
available, see for example the Mathieu functions used for elliptical silencers by Denia et al. [24]. As both analytic methods
have been reported elsewhere only a brief review of the methodology behind each approach will be included here. Both
analytic methods depend on using a modal representation of the sound fields in each region and then matching
appropriate continuity conditions over the silencer inlet and outlet planes (planes A and B, respectively). Here, the AMM
method uses a closed form analytic solution that calculates the fundamental modes only, whereas the NMM method uses
the Newton–Raphson method to locate higher order modes [5]. In fact, it is in locating higher order modes that difficulties
with analytic methods arise, as an iterative method is required in order to find the roots of the eigenequation. Kirby and
Denia [5] note that when mean flow is present locating all required roots is not always straightforward and this can lead to
analytic methods taking longer to run than one would normally expect. On locating the desired higher order modes, the
axial continuity conditions are enforced, although for fundamental mode propagation these equations reduce to continuity
of volume velocity and pressure [2]. When higher order modes are present Kirby and Denia [5] proposed using continuity of
pressure and displacement, although the kinematic condition was written generally so that modifications may be made in
light of further experimental evidence. On applying the matching conditions it is then straightforward to construct a matrix
for the silencer and, after application of the inlet and outlet axial boundary conditions, this is solved for the modal
amplitudes. The overall performance of the silencer is readily obtained from the modal amplitudes, which is normally
quantified in terms of the silencer transmission loss (TL). Kirby and Denia [5] also reported expressions for the four poles of
the dissipative silencer; however, these expressions are incorrect and a corrected methodology will be introduced in
Section 2.2.1. For the multi-mode method, the bulk of the solution time is taken up in finding the roots of the governing
eigenequation and this will be reviewed in Section 3. Once this has been done, finding the modal amplitudes does not
normally take very long since the matrix that must be inverted is usually small, assuming that a relatively small number of
modes is retained in the silencer chamber (normally between six and 10).

2.2. Numerical mode matching

A numerical matching technique is included here because it is suitable for analysing silencers of arbitrary but uniform
cross-section, but also for circular silencers it avoids root finding algorithms such as the Newton–Raphson method. A point
collocation scheme was reported by Kirby [15] for elliptical silencers and this method forms the basis of the numerical
matching scheme that follows. However, instead of matching over discrete collocation points on the silencer cross-section,
the method presented here will use numerical mode matching and so numerical integration is used to enforce the axial
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matching conditions over planes A and B. Here, the numerical mode matching (NMM) method adopts a modal
representation for the sound field in the inlet and outlet pipes given by Eqs. (3) and (4); similarly for the silencer section

p0cðx; y; zÞ ¼
X1
n¼0

BnCn
i ðy; zÞe

�ik0kn
i x þ

X1
n¼0

CnCn
r ðy; zÞe

�ik0kn
r x. (7)

Here, Bn and Cn are the modal amplitudes, kn
i are the incident and kn

r the reflected axial wavenumbers, and Cn
i are the

incident and Cn
r the reflected eigenfunctions. To construct the governing eigenequation for the silencer chamber, the radial

boundary conditions defined by Eqs. (5) and (6) are used, along with the assumption that the acoustic velocity normal to
the walls of the silencer is zero. The eigenproblem is then solved using the finite element method, and so the eigenvector
for region Rc is approximated as

Cðy; zÞ ¼
Xns

j¼1

Njðy; zÞCsj
; (8)

where Nj is a global trial (or shape) function for the (transverse) finite element mesh, Csj
is the value of Cðy; zÞ at node j,

and ns is the number of nodes (or degrees of freedom) lying on the silencer cross section in region Rc. Expressing Eq. (8) in
vector form yields

Cðy; zÞ ¼ ½N1ðy; zÞ;N2ðy; zÞ; . . . ;Nns ðy; zÞ�

Cs1

Cs2

Csns

2
64

3
75 ¼ NW. (9)

Following Kirby [15], the governing eigenequation is written as

0 I

�R�1
3 R1 �R�1

3 R2

" #
W

kW

� �
¼ k

W
kW

� �
, (10)

where I is an identity matrix. The matrices R1, R2 and R3 are given by

R1ps ¼ ½H2 � k2
0L2�W2 þ ~r�1

½H3 þG2L3�W3 þ ðik0=zÞ½Lp3
� Lp2

�fWp3
�Wp2

g, (11)

R2ps ¼ 2Mk2
0H2W2 þ Q ðik0M=zÞLp2

fWp3
�Wp2

g, (12)

R3ps ¼ k2
0ð1�M2ÞH2W2 þ ~r�1k2

0H3W3 � ðQ � 1Þðik0M2=zÞLp2
fWp3

�Wp2
g. (13)

In addition,

H2 ¼

Z
R2

rNT � rN dy dz, (14)

H3 ¼

Z
R3

rNT � rN dy dz, (15)

L2 ¼

Z
R2

NTN dy dz, (16)

L3 ¼

Z
R3

NTN dy dz, (17)

Lp2
¼

Z
Sp2

NTN dy dz, (18)

Lp3
¼

Z
Sp3

NTN dy dz. (19)

Here, vectors Wp2
and Wp3

hold values of Cðy; zÞ on the perforated pipe and Sp2
and Sp3

denote the surface of the perforated
pipe lying in regions R2 and R3, respectively.

Eq. (10) is solved for nr incident and nr reflected eigenvalues and their associated eigenvectors. Numerical mode
matching proceeds by enforcing two matching conditions over the inlet and outlet planes (A and B). The first condition is
continuity of pressure and here the incident eigenfunction in region R1 is chosen as a weighting function, which yieldsZ

R1

p01F
n
i ðy; zÞdR1 ¼

Z
R2

p02F
n
i ðy; zÞdR2, (20)
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over plane A, and Z
R2

p02F
n
i ðy; zÞdR2 ¼

Z
R4

p04F
n
i ðy; zÞdR4, (21)

over plane B. The second matching condition is a kinematic condition, which is chosen here to be the same as that
used by Kirby and Denia [5]. Accordingly, the incident eigenfunction in region Rc is chosen as the weighting function and
this yields

½1�Mln
��Q

Z
R1

qp01
qx

Cn
i ðy; zÞdR1 ¼ Y

Z
Rc

qp0c
qx

Cn
i ðy; zÞdRc (22)

for plane A, and

Y

Z
Rc

qp0c
qx

Cn
i ðy; zÞdRc ¼ ½1�Mln

��Q
Z

R4

qp04
qx

Cn
i ðy; zÞdR4 (23)

for plane B. Here

Y ¼
½1�Mkn

��Q 0prpr1

~r r1prpr2

( )
, (24)

and ~r ¼ rðoÞ=r0, where rðoÞ is the effective (complex) density of the porous material. Eqs. (20)–(23) represent four
coupled equations which may be re-written as

AnImn
11r
� BnImn

C1i
� ~C

n
eik0kn

r LImn
C1r
¼ �F0Im0

11i
, (25)

An ln
r

½1�Mln
r �

Q
Imn
1Cr
� Bnkn

i Imn
CCi
� ~C

n
kn

r eik0kn
r LImn

CCr
¼ �F0 l0

i

½1�Ml0
i �

Q
Im0
1Ci

, (26

Bne�ik0kn
i LImn

C1i
þ ~C

n
Imn
C1r
� DnImn

11i
¼ 0, (27)

Bnkn
i e�ik0kn

i LImn
CCi
þ ~C

n
kn

r Imn
CCr
� Dn ln

i

½1�Mln
i �

Q
Imn
1Ci
¼ 0, (28)

where

Imn
11i;r
¼

Z
R1

Fm
i ðy; zÞF

n
i;rðy; zÞdy dz (29)

Imn
C1i;r
¼ Inm

1Ci;r
¼

Z
R1

Cm
i ðy; zÞF

n
i;rðy; zÞdy dz, (30)

Imn
CCi;r
¼ ½1�Mkn

i;r�
�Q
Z

R2

Cm
i ðy; zÞC

n
i;rðy; zÞdy dzþ ~r�1

Z
R3

Cm
i ðy; zÞC

n
i;rðy; zÞdy dz, (31)

and ~C
n
¼ Cne�ik0kn

r L, for a silencer of length L. The integrals in Eqs. (29)–(31) are carried out numerically after truncating
the sums in the inlet and outlet pipes at m1 and m4, respectively. Eqs. (25)–(28) are then solved simultaneously for the
unknown modal amplitudes after setting F0 ¼ 1, Fn ¼ 0 for n40, and En ¼ 0 for all n. For plane wave propagation in the
inlet and outlet pipes, the silencer TL may then readily be obtained from

TL ¼ �20 log10jD
0j. (32)

2.2.1. Four pole representation

In the paper by Kirby and Denia [5] expressions are provided for the four poles of a dissipative silencer.
These expressions are incorrect. Instead one must solve the systems of equations twice with different axial
boundary conditions [25]. The general four pole transfer matrix (for plane wave propagation in the inlet/outlet pipes) is
given as

p01ðxÞ

u01ðxÞ

( )
¼

T11 T12

T21 T22

" #
p04ðx

0Þ

u04ðx
0Þ

( )
. (33)

This system is solved by: (i) setting p04ðx
0Þ ¼ 0, which gives T12 ¼ p01ðxÞ=u04ðx

0Þ and T22 ¼ u01ðxÞ=u04ðx
0Þ and (ii) setting

u04ðx
0Þ ¼ 0, which gives T11 ¼ p01ðxÞ=p04ðx

0Þ and T21 ¼ u1ðxÞ=p04ðx
0Þ. It is convenient here to choose x ¼ x0 ¼ 0 so that the four



ARTICLE IN PRESS

R. Kirby / Journal of Sound and Vibration 325 (2009) 565–582 571
pole transfer matrix is coincident with silencer planes A and B. For (i) this gives D0
ðiÞ þ E0

ðiÞ ¼ 0, and

T12 ¼
1þ A0

ðiÞ

D0
ðiÞ � E0

ðiÞ

Z, (34a)

and

T22 ¼
1� A0

ðiÞ

D0
ðiÞ � E0

ðiÞ

. (34b)

For (ii) D0
ðiiÞ � E0

ðiiÞ ¼ 0 and

T11 ¼
1þ A0

ðiiÞ

D0
ðiiÞ þ E0

ðiiÞ

, (35a)

and

T21 ¼
1� A0

ðiiÞ

ZðD0
ðiiÞ þ E0

ðiiÞÞ
. (35b)

Here, Z ¼ r0c0 and the subscripts (i) and (ii) denote the value of the modal coefficient for solutions (i) and (ii), respectively.
The silencer TL may then be calculated from

TL ¼ 20 log10j0:5fT11 þ T12=Z þ T21Z þ T22gj. (36)

Note that the choice of x ¼ x0 ¼ 0 suppresses the influence of higher order modal scattering close to the inlet and outlet
planes in regions R1 and R4. To include this scattering, one may simply set x ¼ �Lin, and x0 ¼ Lout so that the four pole
transfer matrix is computed in regions R1 and R4, a distance Lin and Lout from planes A and B, respectively. A study of the
effect of suppressing modal scattering at planes A and B is included towards the end of the following section.

2.3. Hybrid numerical method

A hybrid numerical (HFE) method is reported here, which is based on the method of Kirby [22]. This requires a full finite
element discretisation of the silencer chamber and so is based on the method of Peat and Rathi [21], although their method
is extended here to include a perforated pipe. Note however that the addition of a perforated pipe means that mean flow in
the absorbent material is neglected, and in the analysis that follows only an isotropic porous material is considered.
Accordingly, the acoustic pressure in the silencer chamber, region Rc, is approximated by

p0cðx; y; zÞ ¼
Xnc

j¼1

Njðx; y; zÞpcj
, (37)

where Nj is a global trial (or shape) function for the finite element mesh, pcj
is the value of the acoustic pressure at node j,

and nc is the number of nodes (or degrees of freedom) in region Rc. Expressing Eq. (37) in vector form yields

p0cðx; y; zÞ ¼ ½N1ðx; y; zÞ;N2ðx; y; zÞ; . . . ;Nnc ðx; y; zÞ�

pc1

pc2

pcnc

2
664

3
775 ¼ Npc . (38)

A weighted residual statement of the wave equation for regions R2 and R3 may now be formulated. After application of
Green’s theorem this yields

Z
R2

½rNT �MrNþ 2ik0NT dN

dx
� k2

0NTN�dx dy dz

" #
p2 ¼

Z
S2

½NTMrp02 � n2�dS2 (39)

for region R2, and

Z
R3

½rNT � rNþG2NTN�dx dy dz

" #
p3 ¼

Z
S3

½NTrp03 � n3�dS3 (40)

for region R3. Here, p2 and p3 hold the values of acoustic pressure in regions R2 and R3, respectively; S2 and S3 denote the
outer surface of regions R2 and R3, respectively, G is the propagation constant of the porous material, and

M ¼

1�M2 0 0

0 1 0

0 0 1

2
64

3
75.
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Eqs. (39) and (40) are coupled together using the pressure and kinematic boundary conditions identified in Eqs. (5) and (6).
For clarity it is convenient first to separate out the integrals on the right-hand side of Eqs. (39) and (40), and to writeZ

S2

½NTMrp02 � n2�dS2 ¼

Z
SA

½NTMrp02 � n2�dSA þ

Z
SB

½NTMrp02 � n2�dSB

þ

Z
Sp2

½NTMrp02 � ne�dSp2
, (41)

and Z
S3

½NTrp03 � n3�dS3 ¼

Z
Sp3

½NTrp03 � n3�dSp3
, (42)

where SA and SB denote the surface of planes A and B that lie in region 2, respectively; Sp2
and Sp3

denote the surface of the
perforated pipe that lies in region R2 and R3, respectively. Eq. (41) is the key to implementing the HFE method since it is
through the integrals over SA and SB that the acoustic velocity in the silencer chamber is matched to the velocity in the
inlet and outlet pipes. This requires the use of Eqs. (3) and (4), which when substituted into the relevant surface integrals in
Eq. (41) yields Z

SA

½NTMrp02 � n2�dSA ¼ ik0ð1�M2Þ

Z
SA

NT½Fnln
i F

n
i þ Anln

r F
n
r �dSA, (43)

and Z
SB

½NTMrp02 � n2�dSB ¼ �ik0ð1�M2Þ

Z
SB

NT½Dnln
i F

n
i þ Enln

r F
n
r �dSB. (44)

Note that the summations have been removed here for clarity. It is convenient to re-write these integrals in matrix form,
to give Z

SA

½NTMrp02 � n2�dSA ¼ Q T
i Fþ Q T

r A, (45)

and Z
SB

½NTMrp02 � n2�dSB ¼ �RT
i Dþ RT

r E, (46)

where

Q i;r ¼ ik0ð1�M2Þ
Xm1

m¼0

lm
i;r

Z
SA

FmNT dSA, (47)

and

Ri;r ¼ ik0ð1�M2Þ
Xm4

m¼0

lm
i;r

Z
SB

FmNT dSB. (48)

Here, m1 and m4 are the number of modes in regions R1 and R4, respectively. Note also that Fi ¼ Fr ¼ F. The remaining
surface integrals in Eqs. (41) and (42) are re-written using the boundary conditions for the perforated pipe given by Eqs. (5)
and (6), to give

Z
Sp2

½NTMrp02 � n2�dSp2
¼

ik0

z

Z
Sp2

NT 1� i
M

k0

q
qx

� �Q

½p0p3
� p0p2

�dSp2
, (49)

and Z
Sp3

½NTrp03 � n3�dSp3
¼ �

ik0

z
rðoÞ
r0

Z
Sp3

NT½p0p3
� p0p2

�dSp3
. (50)

Here, p0p3
and p0p2

denote the acoustic pressure on the perforated pipe in regions R2 and R3, respectively. The right-hand side
of Eq. (49) contains a second order derivative if Q ¼ 2, this may be eliminated by integration, to give

Z
Sp2

½NTMrp02 � n2�dSp2
¼

ik0

z

Z
Sp2

NTNþ ðiQM=k0ÞN
T dN

dx

�(
þ fðQ � 1ÞM2=k2

0g
dNT

dx

dN

dx

#
dSp2

)

� ½pp3
� pp2

� � ðQ � 1Þ
iM2

zk0

Z
Sc2

NT dN

dx
dSc2

( )
½pp3
� pp2

�, (51)

where the vectors pp2
and pp3

hold the values of acoustic pressure on the perforated pipe in regions R2 and R3, respecti-
vely, and Sc2

represents a pair of circuits at r ¼ r1 on planes A and B. Eqs. (50) and (51) may now be written in matrix
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form, to give Z
Sp2

½NTMrp02 � n2�dSp2
¼ ½V2 �W2�½pp3

� pp2
�, (52)

and Z
Sp3

½NTrp03 � n3�dSp3
¼ V3½pp3

� pp2
�, (53)

where

V2 ¼
ik0

z

Z
Sp2

NTNþ ðiQM=k0ÞN
T dN

dx
þ fðQ � 1ÞM2=k2

0g
dNT

dx

dN

dx

" #
dSp2

, (54)

V3 ¼
ik0

z
rðoÞ
r0

Z
Sp3

NTN dSp3
, (55)

and

W2 ¼ ðQ � 1Þ
iM2

zk0

Z
Sc2

NT dN

dx
dSc2

. (56)

Finally, Eqs. (39) and (40) are re-written using matrix notation and then combined to give

Gpc � Q T
r Aþ RT

i Dþ RT
r E ¼ Q T

i F. (57)

Here,

Gpc ¼ K2p2 þ K3p3 � ½V2 � V3 �W2�fpp3
� pp2

g, (58)

K2 ¼

Z
R2

½rNT �MrNþ 2ik0NT dN

dx
� k2

0NTN�dx dy dz, (59)

and

K3 ¼

Z
R3

½rNT � rNþ G2NTN�dx dy dz. (60)

Eq. (57) matches the acoustic velocity in the silencer chamber to that in the inlet and outlet pipes; however, before the
problem can be solved a further matching condition is required and here continuity of pressure is enforced separately over
planes A and B. For plane A, this gives

X1
n¼0

FnFn
i þ

X1
n¼0

AnFn
r ¼ p2A

, (61)

and for plane B

X1
n¼0

DnFn
i þ

X1
n¼0

EnFn
r ¼ p2B

. (62)

Here, p2A
and p2B

hold values of the acoustic pressure in region R2 that lies on SA and SB, respectively. It was noted by Astley
[23] that in order to obtain a final system matrix that is symmetrical it is necessary to weight each pressure condition using
the velocity in the inlet/outlet pipes. Accordingly, for plane A the reflected velocity in region R1 is used, and for plane B the
incident velocity in region R4 is used. This then gives

M1FþM1A� Q rp2A
¼ 0, (63)

and

M2DþM2E� Rip2B
¼ 0, (64)

where

M1 ¼ ik0ð1�M2Þ
Xm1

m¼0

Xm1

n¼0

lm
r

Z
SA

FmFn dSA, (65)

and

M2 ¼ ik0ð1�M2Þ
Xm4

m¼0

Xm4

n¼0

lm
i

Z
SB

FmFn dSB. (66)
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Eqs. (57), (63) and (64) are now solved to find the unknown pressures in the silencer chamber and the modal amplitudes in
the inlet and outlet pipes. To combine these equations, it is convenient first to write

Gpc ¼

G11 G1e G13

Ge1 Gee Ge3

G31 G3e G33

2
64

3
75

p2A

pce

p2B

8><
>:

9>=
>;, (67)

where matrix Gmn has order nm � nn. Here, n1 and n3 denote the number of nodes on SA and SB, respectively (where,
m1pn1, and m4pn3); nc is the number of nodes in region Rc, and ne is the number of nodes that lie in region 2, but do not
lie on SA and SB (so that ne ¼ nc � n1 � n3). The values for pressure at those nodes in region Rc that do not lie on SA and SB

are held in matrix pce. To solve the problem it is necessary to ascribe the axial boundary conditions in the inlet and outlet
pipes; to find the silencer TL it is easiest here simply to assume plane wave conditions in the inlet and outlet pipe and to set
F0 ¼ 1, Fn ¼ 0 for n40, and En ¼ 0 for all n. This then gives

M1 �Q r 0 0 0

�Q T
r G11 G1e G13 0

0 Ge1 Gee Ge3 0

0 G31 G3e G33 RT
i

0 0 0 Ri �M2

2
66666664

3
77777775

A

p2A

pce

p2B

D

2
6666664

3
7777775
¼

� ~M1

~Q
T
i

0

0

0

2
66666664

3
77777775

, (68)

where

~M1 ¼ ik0ð1�M2Þ
Xm1

m¼0

lm
r

Z
SA

Fm dSA; (69)

and

~Q i ¼ ik0ð1�M2Þ
Xm1

m¼0

lm
i

Z
SA

Fm dSA. (70)

The silencer TL may then readily be computed using Eq. (32). Alternatively, it is straightforward to solve for the silencer
four poles using the method outlined in Section 2.2.1. Here, it is necessary to solve the problem twice: (i) setting p04 ¼ 0 and
(ii) setting u04 ¼ 0. In general this may be written as

M1 �Q r 0 0 0 0

�Q T
r G11 G1e G13 0 0

0 Ge1 Gee Ge3 0 0

0 G31 G3e G33 RT
i RT

r

0 0 0 Ri �M2 �M2

0 0 0 0 I �I

2
6666666664

3
7777777775

A

P2A

Pce

P2B

D

E

2
666666664

3
777777775
¼

� ~M1

~Q
T
i

0

0

0

0

2
6666666664

3
7777777775

, (71)

with the positive sign used for solution (i) and the negative sign for solution (ii). The silencer four poles may then be
obtained from Eqs. (34) and (35). Note that by enforcing the axial matching conditions over the inlet and outlet planes of
the silencer modal scattering close to these planes (in regions R1 and R4) is suppressed when computing the four poles. This
may be avoided by moving planes A and B into regions R1 and R4, although this will be at the expense of extending the finite
element mesh. Alternatively, one could add in lengths Lin and Lout in the four pole formulation of Section 2.2.1, which
would incur no additional computational expenditure. However, for automotive silencers very little additional energy is
likely to be dissipated through the scattering of higher order modes in regions R1 and R4. For example, for Silencers 1–3 the
addition of inlet and outlet mesh extensions delivers an average change in transmission loss of 0.2 percent (with a
maximum of 0.5 percent) when compared to computations that omit the mesh extensions. Accordingly, it is justifiable, at
least for the automotive silencers studied here, to keep planes A and B coincident with the inlet and outlet planes of the
silencer.

3. Results and discussion

The accuracy and computational efficiency of the four different modelling approaches detailed in Section 2 are
investigated here for three circular dissipative silencers. Results will also be presented for two silencers with elliptical
cross-sections in view of the change in matching conditions described in Section 2.2. The dimensions of each silencer are
listed in Table 1, where the outer radius of the circular silencers is denoted by r2 and the elliptical silencers have dimensions
a� b where a is the major axis and b is the minor axis. Here, Silencers 1 and 2 have been chosen to match two of the
silencers studied by Kirby and Denia [5]; Silencer 3 was studied by Selamet et al. [7] and is included because of a low
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Table 1
Dimensions and material parameters for dissipative silencers.

Silencer Length L (mm) r1 (mm) r2 (mm) Absorbent Y (Pa s/m2) s

1 315 37 76.2 E glass 30,716 0.263

2 330 37 101.6 E glass 30,716 0.263

3 257.2 24.5 82.2 Fibrous material 4896 0.08

4 350 37 110� 60a Basalt wool 13,813 0.263

5 450 37 95�50a E glass 30,716 0.263

a Elliptical silencers have dimension a� b, where a is the major axis and b is the minor axis.
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perforated pipe porosity; Silencers 4 and 5 are identical to those studied by Kirby [15]. All the calculations that follow
assume that mean flow with a Mach number of M ¼ 0.15 is present in the airway.

The bulk acoustic properties of the materials contained within each silencer are defined here using Delany and Bazley
coefficients, where

G ¼ a1x
�a2 þ i½1þ a3x

�a4 �, (72)

and

~r ¼ �G½a5x
�a6 þ ið1þ a7x

�a8 Þ�. (73)

Here, the constants a1; . . . ; a8 are Delany and Bazley coefficients that must be measured for each absorbing material, x is the
non-dimensional frequency parameter given by x ¼ r0f=Y and Y is the material flow resistivity. Values of the Delany and
Bazley constants for E Glass and Basalt wool can be found in Ref. [15], and for Silencer 3 these values can be found in
Ref. [7]. A low frequency correction, discussed in detail by Kirby [2,15] is also adopted here, but only for Silencers 1, 2, 4 and
5; this correction is omitted from Silencer 3 in order to remain consistent with the material specification in Ref. [7]. For the
perforated pipe the normalised impedance z is given by [5]

z ¼ ½z0 þ i0:425k0dð ~r� 1ÞFðsÞ�=s, (74)

where

FðsÞ ¼ 1� 1:06s0:5 þ 0:17s1:5. (75)

Here, d is the hole diameter, s is the open area porosity and z0 is the orifice impedance measured in the absence of an
absorbing material. Values for z0 were measured by Kirby and Cummings [26] and this data is adopted here with
d ¼ 3.5 mm and the hole thickness t ¼ 1 mm for Silencers 1, 2, 4 and 5, for Silencer 3 d ¼ 2.49 mm and t ¼ 0.9 mm [7]. For a
mean flow Mach number of M ¼ 0.15 a friction velocity of un ¼ 2:56 m=s is used for the impedance calculations [26].

The focus of this paper is on investigating the relative accuracy and computational efficiency of four alternative
modelling methodologies. Silencer design normally focuses on computing overall silencer performance, which is usually
quantified in terms of the silencer TL. Accordingly, the performance of each modelling approach will be judged in terms of
the TL predictions and this will be computed without recourse to finding the silencer four-poles. The analysis of each
method will begin by examining the convergence of the AMM, NMM and HFE methods. Here, the AMM predictions will
follow exactly the method reported by Kirby and Denia [5]. For the NMM method axisymmetry is assumed so that for
circular silencers a one-dimensional (y plane) transverse finite element mesh is necessary and here three noded
isoparametric line elements are used; for the elliptical silencers a two-dimensional (y and z plane) transverse finite
element mesh is necessary and here six noded isoparametric triangular and eight noded isoparametric quadrilateral
elements are used. For the HFE method, symmetry allows a two-dimensional cross section to be studied for the circular
silencers (x and y plane) and here eight noded quadrilateral elements are used. Furthermore, the inclusion of a perforated
pipe in the NMM and HFE models is achieved by adding a node on either side of the perforated pipe, noting that the
perforated pipe is treated as an infinitely thin surface in the model and so each adjacent node has an identical location. The
analysis of convergence is restricted here to the AMM, NMM and HFE methods because the APW approach does not include
an iterative solution and so ‘‘convergence’’ is not defined for this method.

3.1. Circular dissipative silencers

In Figs. 2–4, the convergence of the TL predictions for each method is shown for a frequency of 2 kHz. This frequency has
been chosen because it represents an upper limit of the frequency range of interest and so represents a stringent test on
convergence. In each figure the relative percentage change in the TL prediction (dE) is plotted against the number of
degrees of freedom for the model, where

dEj ¼ 100�
½TLj � TLj�1�

TLj
. (76)
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Fig. 2. Convergence of TL for AMM method at a frequency of 2 kHz: ———, Silencer 1; — — —, Silencer 2; and — - — - —, Silencer 3.

Fig. 3. Convergence of TL for NMM method at a frequency of 2 kHz: ———, Silencer 1; — — —, Silencer 2; and — - — - —, Silencer 3.

Fig. 4. Convergence of TL for HFE method at a frequency of 2 kHz: ———, Silencer 1; — — —, Silencer 2; and — - — - —, Silencer 3.
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Here, dE tracks the percentage change in the TL computation j, when compared to the previous computation j�1, so that
convergence is achieved when dE! 0. Note that as j increases, the number of degrees of freedom in the model is increased;
however, in order to properly track convergence it is important to use small increments in the number of degrees of
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freedom, nN and nH, or the number of modes nA. For the AMM method nA denotes the size of the overall system of
equations, with nA ¼ m1 þ 2mc þm4, where m1 and m4 are the number of modes in regions 1 and 4, respectively, and mc

is the number of modes in the silencer chamber (see Ref. [5]). Similarly, for the NMM method, nN ¼ m1 þ 2ns þm4

(with ns ¼ nr), and for the HFE method, nH ¼ m1 þ nc þm4.
A comparison between Figs. 2, 3 and 4 indicates that the convergence of the NMM method is much more stable than the

AMM and HFE methods. Here, the convergence of the AMM method is rather erratic, although the general trend is similar
to that seen for the NMM method. The HFE method also displays rather erratic convergence although achieving smooth
convergence for this model is more difficult because one must modify a two-dimensional finite element mesh, which can
lead to step changes in accuracy as, say, an extra transverse element is added over the length of the silencer. In contrast, the
NMM method exhibits very good convergence and attains low values of dE much faster than the other two methods.
However, it should be noted that all three methods converge to values of dEo0:1 relatively quickly and, once this limit has
been achieved, this level of accuracy is generally maintained. Furthermore, convergence to values of dEo0:1 generally
equates to convergence in TL predictions to at least one decimal place. This is significant, as practical silencer design is not
normally interested in delivering predictions to levels of accuracy greater than one decimal place, especially as one cannot
measure TL to this degree of accuracy. Accordingly, convergence to dE ¼ 0:1 should be viewed as sufficient for most
practical uses of the models presented here.

In Figs. 2–4 the number of degrees of freedom required to achieve a given level of convergence is normally much higher
for the HFE method when compared to the two mode matching methods. This is to be expected because the AMM and
NMM methods utilise the uniform geometry of the silencer section; however, the respective values for nA, nN and nH do not
necessarily provide a reliable guide to the relative speed of each method. To investigate this further, values of dE are plotted
against the time taken (in seconds) to generate each TL computation in Figs. 5–7, for Silencers 1, 2 and 3 at a frequency of
2 kHz. Here, the APW method has again been omitted, not only because convergence is not defined for this method but also
because the predictions are almost instantaneous. For example, after averaging the time taken to compute a large number
of frequency calculations, the approximate time to deliver one frequency calculation was estimated to be t ¼ 0.0005 s,
which is far quicker than the other methods. Of course, this should be no surprise given the nature of the APW method;
however, it is the accuracy of this method that is of more interest and this will be reviewed later on in this section. Thus, the
focus in Figs. 5–7 is on the rates of convergence of the three other methods and here the relative speed of each method may
be compared against one another. The values generated in Figs. 5–7 were computed on a Pentium 4, 3.6 GHz machine with
1 GB of RAM and the values quoted for a single frequency were obtained by running multiple frequency calculations and
taking an average value. It is not surprising that in each of these figures the time taken to compute a new TL value increases
as the number of degrees of freedom increases. Figs. 5–7 are, however, interesting in that they show the AMM method
performing relatively poorly when compared to the two numerical methods. Clearly, the NMM is very quick when
compared to the AMM and HFE methods and low values of dE are achieved with very little computational effort.
Conversely, the AMM method performs relatively poorly and is at least ten times slower than the NMM method for values
of dE � 0:1. The reason for this is that the time taken to solve the NMM equations is largely dictated by the size of the final
matrix (nN), whereas for the AMM method the time taken is dominated by the root finding algorithm. Here, the relatively
fast Newton–Raphson method has been used to find the roots (see Ref. [5]), but the number of initial guesses required
coupled with an iterative process means that this method is time consuming, especially as one must find both incident and
reflected wavenumbers. It is probably possible here to optimise the root finding algorithm further and to improve the speed
of this method, but it is unlikely that this will be improved sufficiently to match the speed of the NMM method. These
results illustrate the dominance of root finding over the computational speed of the AMM method and so indicate the
potential advantages of alternative analytic approaches such as the substructuring method of Albelda et al. [8,11]. Here, if
Fig. 5. Rate of convergence for TL of Silencer 1 at a frequency of 2 kHz: ———, NMM method; — — —, AMM method; and — - — - —, HFE Method.
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Fig. 6. Rate of convergence for TL of Silencer 2 at a frequency of 2 kHz: ———, NMM method; — — —, AMM method; and — - — - —, HFE Method.

Fig. 7. Rate of convergence for TL of Silencer 3 at a frequency of 2 kHz: ———, NMM method; — — —, AMM method; and — - — - —, HFE Method.
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the two subdomain eigenproblems can be solved quickly and one does not require too many modes to obtain a converged
solution, then this method should outperform the AMM method. However, firm conclusions await a full reporting of the
method, and one doubts that this method would be faster than the NMM method if the number of substructural modes
used in the absence of flow [8] are representative of those required when flow is present.

In Figs. 5–7 the speed of convergence of the HFE is seen to be comparable to the NMM method at higher values of dE, but
eventually this method slows as higher levels of convergence are sought and eventually the method becomes slower than
the AMM method. It is, however, rather surprising to note that the HFE method performs well when compared to the AMM
at values of dE � 0:1 and is even comparable in speed to the NMM method. In Fig. 4, the number of degrees of freedom
required to deliver convergence to dE � 0:1 is much higher than that seen for the AMM and NMM methods; however, the
HFE method delivers a sparse, symmetric and banded matrix, which leads to relatively fast inversion when compared to
mode matching methods that invert dense non-symmetric matrices. Accordingly, the results presented here demonstrate
that the time taken to invert a small but dense non-symmetric matrix is similar to that taken to invert a much larger but
banded symmetric matrix. Therefore, for values of dE � 0:1 the HFE method is capable of computations with a speed
comparable to the NMM method but faster than an equivalent analytic method, a point that is often not recognised in the
literature. Of course, as one increases values of nH the time taken to solve the HFE problem increases rapidly, but only at
relatively high values of nH is the HFE method seen to become slower than the AMM method.

The final test for each method is a comparison between the accuracy of the predictions generated. Accuracy will be
examined here first by comparing TL predictions converged to two decimal places, and then by comparing predictions
converged to dE � 0:1. This allows a comparison between the accuracy that each method is capable of and also the accuracy
that may be achieved if one is interested in economising on computational speed. In Tables 2–4, a comparison between TL
predictions converged to two decimal places is shown for Silencers 1–3. Here, problems with the accuracy of the APW
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Table 2
Transmission loss values for Silencer 1 converged to two decimal places and after optimising for computational speed (in parentheses).

Frequency (Hz) APW (dB) AMM (dB) HFE (dB) NMM (dB)

50 1.88 1.45 (1.4) 1.43 (1.4) 1.45 (1.5)

100 3.30 2.75 (2.7) 2.73 (2.7) 2.76 (2.8)

250 5.60 5.04 (5.0) 5.03 (5.0) 5.04 (5.0)

500 12.69 11.62 (11.6) 11.62 (11.6) 11.61 (11.6)

750 18.95 17.63 (17.6) 17.62 (17.6) 17.62 (17.6)

1000 23.67 22.30 (22.3) 22.30 (22.3) 22.29 (22.3)

1500 29.23 26.61 (26.6) 26.61 (26.6) 26.61 (26.6)

2000 23.84 27.35 (27.4) 27.34 (27.3) 27.35 (27.4)

Table 3
Transmission loss values for Silencer 2 converged to two decimal places and after optimising for computational speed (in parentheses).

Frequency (Hz) APW (dB) AMM (dB) HFE (dB) NMM (dB)

50 4.64 3.29 (3.2) 3.29 (3.3) 3.29 (3.3)

100 5.62 4.58 (4.5) 4.60 (4.6) 4.59 (4.6)

250 10.14 8.65 (8.6) 8.71 (8.7) 8.65 (8.7)

500 16.79 14.36 (14.4) 14.41 (14.4) 14.35 (14.4)

750 19.64 17.84 (17.8) 17.84 (17.8) 17.83 (17.8)

1000 20.29 20.29 (20.3) 20.28 (20.3) 20.28 (20.3)

1500 20.53 25.00 (25.0) 25.01 (25.0) 24.99 (25.0)

2000 22.68 29.44 (29.5) 29.45 (29.4) 29.43 (29.4)

Table 4
Transmission loss values for Silencer 3 converged to two decimal places and after optimising for computational speed (in parentheses).

Frequency (Hz) APW (dB) AMM (dB) HFE (dB) NMM (dB)

50 2.93 3.71 (3.7) 3.73 (3.7) 3.72 (3.7)

100 6.84 6.32 (6.3) 6.37 (6.4) 6.33 (6.3)

250 12.83 9.98 (10.0) 9.97 (10.0) 9.98 (10.0)

500 17.07 14.43 (14.4) 14.43 (14.4) 14.43 (14.4)

750 20.97 19.80 (19.8) 19.80 (19.8) 19.78 (19.8)

1000 23.24 24.79 (24.8) 24.91 (24.9) 24.77 (24.8)

1500 25.66 39.26 (39.3) 39.70 (39.7) 39.28 (39.3)

2000 21.45 24.84 (24.8) 24.86 (24.8) 24.83 (24.8)

R. Kirby / Journal of Sound and Vibration 325 (2009) 565–582 579
method are obvious at higher frequencies as well as for a perforated pipe of low porosity. This supports the observations
made by Kirby [2] and indicates that, although the APW method provides instantaneous predictions, the accuracy of these
predictions is acceptable only if one is interested in relatively low frequencies, say below 500 Hz. For the other three
methods very good agreement between TL predictions is observed over the entire frequency range. This serves to validate
the NMM and HFE models in Sections 2.2 and 2.3, respectively. It is interesting also to note the very good agreement
between the HFE method and the two mode matching techniques. In the article by Kirby and Denia [5] it was proposed
that continuity of displacement should be used for the axial kinematic matching condition over the inlet/outlet planes of
the silencer, but only if continuity of displacement was already being used for the transverse kinematic condition over the
perforated pipe. Accordingly, the NMM method reported here adopts this suggestion and so matches using the same
conditions as those adopted by the AMM method. In contrast, the HFE method described in Section 2.3 uses continuity of
displacement over the perforated pipe and (the more usual) continuity of velocity over the silencer inlet/outlet planes. The
excellent agreement between each method thus lends support to the observations of Kirby and Denia [5] and suggests that
modifying the axial kinematic condition is necessary only when using a modal expansion for the sound pressure field in the
silencer section.

Tables 2–4 also contain TL predictions converged to dE � 0:1 (in parentheses). This level of accuracy roughly equates to a
TL prediction converged to one decimal place and is therefore designed to record the level of accuracy possible
when lowering the solution time. Accordingly, the data in parentheses in Tables 2–4 should be viewed in conjunction with
Figs. 5–7. Here, the TL predictions are virtually identical for the AMM, NMM and HFE methods and so, when considering
accuracy to only one decimal place, the same predictions are obtained regardless of the method chosen. Therefore, one may
chose an appropriate method based on the speed of solution, and an examination of Figs. 5–7 clearly shows that the NMM
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is the fastest of the three techniques, and is significantly faster than the AMM method. What is interesting, however, is that
the HFE method also outperforms the AMM method and is comparable in speed to the NMM method, at least for the
dissipative silencers studied here. Clearly, this result has ramifications when choosing a modelling technique. Here, it is not
necessarily the case that a numerical method is always slower than an analytic method. The results presented indicate that
the opposite is true if one is only interested in generating TL predictions for automotive silencers to an accuracy of one
decimal place, which normally represents an acceptable level of accuracy. Therefore, for simple circular dissipative
silencers the NMM method provides a reliable technique that does not depend on mode matching and is significantly faster
than an equivalent analytic method; for more complex but axially uniform silencer geometries, such as those which
include inlet/outlet extensions, the HFE method is also capable of outperforming the AMM and modifying the finite
element mesh to accommodate more complex geometries is very straightforward.

3.2. Elliptical dissipative silencers

The NMM model presented in Section 2.2 is a modified version of the point collocation method of Kirby [15] that
includes the new axial kinematic matching condition later suggested by Kirby and Denia [5]. In view of these changes it is
appropriate here to revisit those predictions presented in Ref. [15]. Accordingly, predictions are presented in Figs. 8 and 9
for Silencers 4 and 5 (see Table 1). The TL predictions presented in Figs. 8 and 9 are for values of dE � 0:1 and were obtained
using nS ¼ 74, m1 ¼ m4 ¼ 1 and nr ¼ 4. Furthermore, after taking an average of the time taken to compute the TL for a
number of different frequencies, the time taken for a single frequency is estimated to be 0.68 s, which compares well with
the time taken for circular silencers. It is evident in Figs. 8 and 9 that the agreement between prediction and experiment
has improved when compared to the equivalent predictions presented by Kirby [15]; however, the difference is small,
which is probably because of the high material flow resistivity used in Silencers 4 and 5 (see Ref. [5] for a fuller discussion
on the influence of material flow resistivity on the axial boundary condition). A comparison between prediction and
Fig. 8. TL for Silencer 4: ———, experiment [15] and — — —, NMM predictions.

Fig. 9. TL for Silencer 5: ———, experiment [15] and — — —, NMM predictions.
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experiment does, however, demonstrate the accuracy that may be achieved using the NMM method for elliptical silencers,
and this may be achieved in a time that is comparable to that achievable when using the AMM for circular silencers.

4. Conclusions

Two numerical and two analytic models are compared here. The analytic models include the plane wave approach of
Kirby [2] and the AMM method of Kirby and Denia [5]. Here, the plane wave approach is shown to be inaccurate at higher
frequencies, but also when perforated pipes of low porosity are present. Accordingly, in order to be confident of accurate
predictions above approximately 500 Hz, it is necessary to include higher order modes in the modelling methodology. The
accuracy and speed of the AMM method is then compared to two new numerical models: the point collocation approach of
Kirby [15], which is modified in order to implement a numerical version of mode matching, and the finite element
approach of Peat and Rathi [21], which is modified to include a perforated pipe and a more efficient hybrid finite element
method.

A comparison between the AMM method and the two numerical methods shows excellent agreement between the
transmission loss predictions obtained for the three silencers studied here. This then allows one to choose an appropriate
modelling technique on the basis of speed and/or flexibility, and here it is shown that the numerical models perform very
well when compared to the AMM method. For example, the NMM method is shown to be significantly faster than both the
AMM and HFE methods for each of the silencers studied here. This is because the NMM does not require an iterative
algorithm to find the roots of the silencer eigenequation (necessary in the AMM method), and the number of modes
required to obtain an accurate solution is relatively small. Accordingly, the number of degrees of freedom required in the
(transverse) finite element mesh is relatively small for the NMM method, even for an asymmetric cross-section. However,
what is perhaps surprising is that the new HFE method also provides relatively fast solutions. Here, if one is interested only
in generating transmission loss predictions accurate to one decimal place, then the HFE method is as least as fast as the
AMM method, and in most cases faster. This is because, in addition to avoiding the need to use iterative root finding
techniques, the HFE method delivers a banded symmetric matrix and this facilitates fast matrix inversion despite the
increase in the number of degrees of freedom. Accordingly, predictions can be generated quickly when using the HFE
method and the normal assumption in the literature that analytic equals fast, and numerical equals slow, are not
necessarily true, at least for automotive dissipative silencers. Therefore, for more complex silencer geometries the
flexibility of the HFE method becomes attractive and for silencers that include, say, inlet and outlet extensions, a numerical
approach can readily be applied in the knowledge that this will not necessarily be slower than the more usual analytic
approach.

It is shown here that automotive dissipative silencers that contain mean flow and a perforated pipe can be modelled
accurately and even when using numerical methods these models can run very quickly on a desktop PC. Accordingly, such
models can readily be applied in an iterative design environment and from the results presented here, the most efficient
technique for a uniform dissipative silencer is a numerical mode matching technique.

References

[1] K.S. Peat, A transfer matrix for an absorption silencer element, Journal of Sound and Vibration 146 (1991) 353–360.
[2] R. Kirby, Simplified techniques for predicting the transmission loss of a circular dissipative silencer, Journal of Sound and Vibration 243 (2001)

403–426.
[3] A. Cummings, I.-J. Chang, Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent, Journal of Sound

and Vibration 127 (1988) 1–17.
[4] S.N. Panigrahi, M.L. Munjal, Comparison of various methods for analysing lined circular ducts, Journal of Sound and Vibration 285 (2005) 905–923.
[5] R. Kirby, F.D. Denia, Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe, Journal of the Acoustical

Society of America 122 (2007) 3471–3482.
[6] M.B. Xu, A. Selamet, I.-J. Lee, N.T. Huff, Sound attenuation in dissipative expansion chambers, Journal of Sound and Vibration 272 (2004) 1125–1133.
[7] A. Selamet, M.B. Xu, I.-J. Lee, N.T. Huff, Analytical approach for sound attenuation in perforated dissipative silencers, Journal of the Acoustical Society of

America 115 (2004) 2091–2099.
[8] J. Albelda, F.D. Denia, M.I. Torres, F.J. Fuenmayor, A transversal substructuring mode matching method applied to the acoustic analysis of dissipative

mufflers, Journal of Sound and Vibration 303 (2007) 614–631.
[9] F.D. Denia, A. Selamet, F.J. Fuenmayor, R. Kirby, Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet

extensions, Journal of Sound and Vibration 302 (2007) 1000–1017.
[10] R. Kirby, J.B. Lawrie, A point collocation approach to modelling large dissipative silencers, Journal of Sound and Vibration 286 (2005) 313–339.
[11] J. Albelda, F.D. Denia, F.J. Fuenmayor, M.J. Martı́nez, A transversal substructuring modal method for the acoustic analysis of dissipative silencers with

mean flow, Journal of the Acoustical Society of America 123 (2008) 3534.
[12] R.J. Astley, A. Cummings, N. Sormaz, A finite element scheme for acoustic propagation in flexible-walled ducts with bulk-reacting liners, and

comparison with experiment, Journal of Sound and Vibration 150 (1991) 119–138.
[13] R. Glav, The point-matching method on dissipative silencers of arbitrary cross-section, Journal of Sound and Vibration 189 (1996) 123–135.
[14] R. Glav, The transfer matrix for a dissipative silencer of arbitrary cross-section, Journal of Sound and Vibration 236 (2000) 575–594.
[15] R. Kirby, Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow, Journal of the Acoustical Society

of America 114 (2003) 200–209.
[16] S. Bilawchuk, K.R. Fyfe, Comparison and implementation of the various numerical methods used for calculating transmission loss in silencer systems,

Applied Acoustics 64 (2003) 903–916.
[17] T.W. Wu, P. Zhang, C.Y.R. Cheng, Boundary element analysis of mufflers with an improved method for deriving the four-pole parameters, Journal of

Sound and Vibration 217 (1998) 767–779.
[18] A. Selamet, I.-J. Lee, N.T. Huff, Acoustic attenuation of hybrid silencers, Journal of Sound and Vibration 262 (2003) 509–527.



ARTICLE IN PRESS

R. Kirby / Journal of Sound and Vibration 325 (2009) 565–582582
[19] S.N. Panigrahi, M.L. Munjal, A generalized scheme for analysis of multifarious commercially used mufflers, Applied Acoustics 68 (2007) 660–681.
[20] O.Z. Mehdizadeh, M. Paraschivoiu, A three-dimensional finite element approach for predicting the transmission loss in mufflers and silencers with

no mean flow, Applied Acoustics 66 (2005) 902–918.
[21] K.S. Peat, K.L. Rathi, A finite element analysis of the convected acoustic wave motion in dissipative silencers, Journal of Sound and Vibration 184 (1995)

529–545.
[22] R. Kirby, Modeling sound propagation in acoustic waveguides using a hybrid numerical method, Journal of the Acoustical Society of America 124 (2008)

1930–1940.
[23] R.J. Astley, FE mode-matching schemes for the exterior Helmholtz problem and their relationship to the FE-DtN approach, Communications in

Numerical Methods in Engineering 12 (1996) 257–267.
[24] F.D. Denia, L. Baeza, J. Albelda, F.J. Fuenmayor, Acoustic behaviour of elliptical mufflers with single-inlet and double-outlet, Proceedings of the 10th

International Congress on Sound and Vibration, Stockholm, July 2004, pp. 3287–3294.
[25] K.S. Peat, Evaluation of four-pole parameters for ducts with flow by the finite element method, Journal of Sound and Vibration 84 (1982) 389–395.
[26] R. Kirby, A. Cummings, The impedance of perforated plates subjected to grazing mean flow and backed by porous media, Journal of Sound and

Vibration 217 (1998) 619–636.


	A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow
	Introduction
	Theory
	Analytic methods
	Numerical mode matching
	Four pole representation

	Hybrid numerical method

	Results and discussion
	Circular dissipative silencers
	Elliptical dissipative silencers

	Conclusions
	References




